FEBS Open Bio (Jul 2021)

The miR‐223/nuclear factor I‐A axis regulates inflammation and cellular functions in intestinal tissues with necrotizing enterocolitis

  • Yu Zheng Wu,
  • Kathy Yuen Yee Chan,
  • Kam Tong Leung,
  • Hugh Simon Lam,
  • Yuk Him Tam,
  • Kim Hung Lee,
  • Karen Li,
  • Pak Cheung Ng

DOI
https://doi.org/10.1002/2211-5463.13164
Journal volume & issue
Vol. 11, no. 7
pp. 1907 – 1920

Abstract

Read online

We previously demonstrated that microRNA(miR)‐223 is overexpressed in intestinal tissue of infants with necrotizing enterocolitis (NEC). The objective of the current study was to identify the target gene of miR‐223 and to investigate the role of the miR‐223/nuclear factor I‐A (NFIA) axis in cellular functions that underpin the pathophysiology of NEC. The target gene of miR‐223 was identified by in silico target prediction bioinformatics, luciferase assay, and western blotting. We investigated downstream signals of miR‐223 and cellular functions by overexpressing the miRNA in Caco‐2 and FHs74 cells stimulated with lipopolysaccharide or lipoteichoic acid (LTA). NFIA was identified as a target gene of miR‐223. Overexpression of miR‐223 significantly induced MYOM1 and inhibited NFIA and RGN in Caco‐2 cells, while costimulation with LTA decreased expression of GNA11, MYLK, and PRKCZ. Expression levels of GNA11, MYLK, IL‐6, and IL‐8 were increased, and levels of NFIA and RGN were decreased in FHs74 cells. These potential downstream genes were significantly correlated with levels of miR‐223 or NFIA in primary NEC tissues. Overexpression of miR‐223 significantly increased apoptosis of Caco‐2 and FHs74 cells, while proliferation of FHs74 was inhibited. These results suggest that upon binding with NFIA, miR‐223 regulates functional effectors in pathways of apoptosis, cell proliferation, G protein signaling, inflammation, and smooth muscle contraction. The miR‐223/NFIA axis may play an important role in the pathophysiology of NEC by enhancing inflammation and tissue damage.

Keywords