PLoS ONE (Jan 2015)

Protein Phosphatase 2A in Lipopolysaccharide-Induced Cyclooxygenase-2 Expression in Murine Lymphatic Endothelial Cells.

  • Yu-Fan Chuang,
  • Mei-Chieh Chen,
  • Shiu-Wen Huang,
  • Ya-Fen Hsu,
  • George Ou,
  • Yu-Jou Tsai,
  • Ming-Jen Hsu

DOI
https://doi.org/10.1371/journal.pone.0137177
Journal volume & issue
Vol. 10, no. 8
p. e0137177

Abstract

Read online

The lymphatic endothelium plays an important role in the maintenance of tissue fluid homeostasis. It also participates in the pathogenesis of several inflammatory diseases. However, little is known about the underlying mechanisms by which lymphatic endothelial cell responds to inflammatory stimuli. In this study, we explored the mechanisms by which lipopolysaccharide (LPS) induces cyclooxygenase (COX)-2 expression in murine lymphatic endothelial cells (SV-LECs). LPS caused increases in cox-2 mRNA and protein levels, as well as in COX-2 promoter luciferase activity in SV-LECs. These actions were associated with protein phosphatase 2A (PP2A), apoptosis signal-regulating kinase 1 (ASK1), JNK1/2 and p38MAPK activation, and NF-κB subunit p65 and C/EBPβ phosphorylation. PP2A-ASK1 signaling blockade reduced LPS-induced JNK1/2, p38MAPK, p65 and C/EBPβ phosphorylation. Transfection with PP2A siRNA reduced LPS's effects on p65 and C/EBPβ binding to the COX-2 promoter region. Transfected with the NF-κB or C/EBPβ site deletion of COX-2 reporter construct also abrogated LPS's enhancing effect on COX-2 promoter luciferase activity in SV-LECs. Taken together, the induction of COX-2 in SV-LECs exposed to LPS may involve PP2A-ASK1-JNK and/or p38MAPK-NF-κB and/or C/EBPβ cascade.