Energy Nexus (Jul 2024)

A review on hydrothermal treatments for solid, liquid and gaseous fuel production from biomass

  • Rui Hong Teoh,
  • Arya S. Mahajan,
  • Sona R. Moharir,
  • Norhuda Abdul Manaf,
  • Suan Shi,
  • Suchithra Thangalazhy-Gopakumar

Journal volume & issue
Vol. 14
p. 100301

Abstract

Read online

The rise in the population and rapid industrialization has resulted in a rise in the global energy consumption. In order to minimize the load on the conventional energy sources, various studies are being conducted for the production of biofuels by hydrothermal operations. Unlike conventional processes of biofuel production, wet biomass can be directly utilised without drying in turn reducing the energy consumption. Feedstocks such as agricultural residue, forest residue, energy crops, algae, sludge, litter and food waste can be utilised for the production of biofuels. The operation intensities (temperature and pressure) can be varied from pressurized hot water to supercritical water. Hydrothermal operations depending on the operating parameters are further subcategorised into four types namely wet torrefaction (WT), hydrothermal carbonization (HTC), hydrothermal liquefaction (HTL) and hydrothermal gasification (HTG). Even though the operating conditions of wet torrefaction and hydrothermal carbonization lie in similar categories, the difference is clearly visible in the level of carbonization. Due to the wide range of operating temperature and pressure, mainly three different products are produced through hydrothermal operations. The temperature range for wet torrefaction can be limited between 150 and 220 °C, whereas the HTC process can be between 200 and 260 °C. At higher temperatures (260 – 370 °C) in hydrothermal liquefaction (HTL), increased isomerization, depolymerization and repolymerization of organic compounds within the biomass occurred, causing liquid product (bio-oil) to be formed as the major product. Hydrothermal gasification can be further subcategorised into three types: namely aqueous phase refining, near critical water gasification and supercritical water gasification (SCWG). This paper has reviewed different hydrothermal operations based on biofuel production from different biomass.

Keywords