Charged Particle (Negative Ion)-Based Cloud Seeding and Rain Enhancement Trial Design and Implementation
Wei Zheng,
Fengming Xue,
Ming Zhang,
Qiqi Wu,
Zhou Yang,
Shaoxiang Ma,
Haotian Liang,
Chuliang Wang,
Yuxing Wang,
Xinkun Ai,
Yong Yang,
Kexun Yu
Affiliations
Wei Zheng
International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Fengming Xue
International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Ming Zhang
International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Qiqi Wu
International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Zhou Yang
International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Shaoxiang Ma
International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Haotian Liang
International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Chuliang Wang
International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Yuxing Wang
International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Xinkun Ai
International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Yong Yang
International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Kexun Yu
International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
China has been suffering from water shortage for a long time. Weather modification and rainfall enhancement via cloud seeding has been proved to be effective to alleviate the problem. Current cloud seeding methods mostly rely on solid carbon dioxide and chemicals such as silver iodide and hygroscopic salts, which may have negative impacts on the environment and are expensive to operate. Lab experiments have proved the efficiency of ion-based cloud seeding compared with traditional methods. Moreover, it is also more environmentally friendly and more economical to operate at a large scale. Thus, it is necessary to carry out a field experiment to further investigate the characteristics and feasibility of the method. This paper provides the design and implementation of the ion-based cloud seeding and rain enhancement trial currently running in Northwest China. It introduces the basic principle of the trial and the devices developed for it, as well as the installation of the bases and the evaluation method design for the trial.