Journal of Food Protection (May 2023)

Protective Effect of alpha-Tocopherol Against Ochratoxin A in Kidney Cell Line HK-2

  • Hyun Jung Lee,
  • Hae Dun Kim,
  • Dojin Ryu

Journal volume & issue
Vol. 86, no. 5
p. 100082

Abstract

Read online

Food safety is a top priority for the protection of infants and young children. Ochratoxin A (OTA) is an emerging concern due to its high toxicity and occurrence in a wide range of agricultural crops and their derived food products including those foods and snacks destined for infants and young children. OTA is considered as a possible human carcinogen, and its main target organ is the kidney. The objective of this study was to investigate the protective effect of α-tocopherol against oxidative stress induced by OTA using human proximal tubule epithelial cells (HK-2). OTA showed dose-dependent increase in cytotoxicity (IC50 = 161 nM, p < 0.05) at 48 h, while treatment up to 2 mM α-tocopherol did not change cell viability. Levels of the reduced form of glutathione (GSH) were decreased with α-tocopherol treatment, although the ratio of the oxidative form (GSSG) to GSH remained the same. Among several genes associated with oxidative stress, expression of superoxide dismutase 1 (SOD1), catalase (CAT), glutathione reductase (GSR), and kidney injury molecule-1 (KIM-1) were significantly up-regulated by OTA treatment. CAT and GSR showed decreased expression at 0.5–2 mM α-tocopherol and OTA at IC50 value, KIM-1 was decreased at 0.5 mM α-tocopherol and OTA at IC50 value, and nuclear factor erythroid 2–related factor 2 (Nrf2) was decreased at 0.5–1 mM α-tocopherol and OTA at IC50 value. In addition, the levels of malondialdehyde (MDA) were increased significantly by OTA while significantly decreased by α-tocopherol. The results show that α-tocopherol may alleviate potential OTA-induced renal damage and oxidative stress through reducing cytotoxicity and enhancing the antioxidant defense systems.

Keywords