Geophysical Research Letters (Apr 2024)
Low Viscosity of Peridotite Liquid: Implications for Magma Ocean Dynamics
Abstract
Abstract Transport properties of silicate melts control magma ocean dynamics on the early terrestrial planets and rocky exoplanets. Here we calculate the viscosity (transport of momentum) of peridotite liquid at potential magma ocean conditions (0–159 GPa, 2,200–6,000 K) using ab initio molecular dynamics simulations. We find that, unlike MgSiO3 or basaltic melts, the viscosity of the highly depolymerized peridotite liquid (a) increases monotonically with pressure without an anomalous drop and (b) is lower than those of other melts over the entire mantle pressure range. Low viscosity would promote fractional crystallization in a less polymerized magma ocean and thus contribute to mantle heterogeneity from its earliest stage. Given the compositional dependence of magma ocean properties, emphasis on multicomponent bulk silicate Earth‐like composition, instead of simple end‐members, are rendered necessary, in order to better understand high‐energy planetary accretion processes and their aftermaths.