Lithosphere (Aug 2021)
Quantitative Characterization of Tidal Couplets in Oil Sands Reservoir, the Upper McMurray Formation, Northeastern Alberta, Canada
Abstract
AbstractThe McMurray Formation, NE Alberta, Canada, is one of the most significant bitumen bearing deposits worldwide. This formation deposited and reworked in fluvial, tidal, or estuarine environments results in a huge number of tidal couplets (TCs) which is consisted of mm-cm scale sandy and muddy interlayers. These couplets not only increase the geologic heterogeneity of the oil sand reservoir but also make it hard to predict the performance of in situ thermal processes. In this paper, based on literatures, lab analysis, core photos, logging, and drilling data, a quantitative characterization procedure for mm-cm scale tidal couplets was proposed. This procedure, which includes identification, classification, quantitative description, and spatial distribution prediction, was presented. Five parameters, thickness, mud volume, laminae frequency, spatial scale, and effective petrophysical properties, were selected to describe the TCs quantitatively. To show the procedure practically, TCs in the oil sand reservoir of McMurray Formation, Mackay River Project, and CNPC, were selected to demonstrate this procedure. The results indicate that the TCs are in mm-cm thickness, densely clustered, and in a variety of geometries. Based on geologic origins, these couplets were divided into four types: tidal bar couplets (TBCs), sand bar couplets (SBCs), mix flat couplets (MFCs), and tidal channel couplets (TCCs). The thickness, mud volume, and frequency were calculated by mathematical morphological processed core photos. The spatial scale of TCs was estimated by high-density well correlations. The effective petrophysical properties were estimated by bedding scale modeling and property modeling via REV. Finally, the spatial distribution of TCs was predicted by object-based modeling.