Energies (Nov 2021)

A Novel Discontinuity Roughness Parameter and Its Correlation with Joint Roughness Coefficients

  • Huizhen Zhang,
  • Changsuo Zhang,
  • Zejin Yang,
  • Zhiqiang Li,
  • Chenlong Wang

DOI
https://doi.org/10.3390/en14227631
Journal volume & issue
Vol. 14, no. 22
p. 7631

Abstract

Read online

Joint roughness determination is a fundamental issue in many areas of rock engineering, because joint roughness has significant influences on mechanical properties and deformation behavior of rock masses. Available models suggested in the literature neglected combined effects of shear direction, scale of rock discontinuities, inclination angle, and amplitude of asperities during the roughness calculations. The main goals of this paper are to establish a comprehensive parameter that considers the characteristics of the size effect, anisotropy, and point spacing effect of the discontinuity roughness, and to investigate the correlation between the proposed comprehensive parameter and joint roughness coefficients. In this work, the Barton ten standard profiles are digitally represented, then the morphological characteristics of the discontinuity profiles are extracted. A comprehensive parameter that considers the characteristics of the size effect, anisotropy, and point spacing effect of the discontinuity roughness is established, and its correlation with joint roughness coefficients (JRC) is investigated. The correlation between the proposed discontinuity roughness parameter and the joint roughness coefficients can predict the JRC value of the natural discontinuities with high accuracy, which provides tools for comprehensively characterizing the roughness characteristics of rock discontinuities. The roughness index Rvh[−30∘,0] reflects the gentle slope characteristics of the rock discontinuity profiles in the shear direction, which ignores the segments with steep slopes greater than 30° on the discontinuity profiles. The influence of steep slope segments greater than 30° should be considered for the roughness anisotropy parameter in the future.

Keywords