Sensors (Sep 2022)

Near Infrared Emitting Semiconductor Polymer Dots for Bioimaging and Sensing

  • Connor Riahin,
  • Kushani Mendis,
  • Brandon Busick,
  • Marcin Ptaszek,
  • Mengran Yang,
  • Gary Stacey,
  • Amar Parvate,
  • James E. Evans,
  • Jeremiah Traeger,
  • Dehong Hu,
  • Galya Orr,
  • Zeev Rosenzweig

DOI
https://doi.org/10.3390/s22197218
Journal volume & issue
Vol. 22, no. 19
p. 7218

Abstract

Read online

Semiconducting polymer dots (Pdots) are rapidly becoming one of the most studied nanoparticles in fluorescence bioimaging and sensing. Their small size, high brightness, and resistance to photobleaching make them one of the most attractive fluorophores for fluorescence imaging and sensing applications. This paper highlights our recent advances in fluorescence bioimaging and sensing with nanoscale luminescent Pdots, specifically the use of organic dyes as dopant molecules to modify the optical properties of Pdots to enable deep red and near infrared fluorescence bioimaging applications and to impart sensitivity of dye doped Pdots towards selected analytes. Building on our earlier work, we report the formation of secondary antibody-conjugated Pdots and provide Cryo-TEM evidence for their formation. We demonstrate the selective targeting of the antibody-conjugated Pdots to FLAG-tagged FLS2 membrane receptors in genetically engineered plant leaf cells. We also report the formation of a new class of luminescent Pdots with emission wavelengths of around 1000 nm. Finally, we demonstrate the formation and utility of oxygen sensing Pdots in aqueous media.

Keywords