Naučno-tehničeskij Vestnik Informacionnyh Tehnologij, Mehaniki i Optiki (May 2014)

THERMOELECTRIC PROPERTIES OF HOT-PRESSED p-TYPE Mg2Si0.3Sn0.7 SOLID SOLUTION

  • G. N. Isachenko,
  • L. V. Bochkov,
  • A. Y. Samunin,
  • M. I. Fedorov,
  • L. P. Bulat,
  • E. A. Gurieva,
  • A. Shik

Journal volume & issue
Vol. 14, no. 3
pp. 57 – 63

Abstract

Read online

It is shown that thermoelectric energy conversion which gives the possibility for utilizing a low potential heat is one of the ways for adoption of energy-saving technologies; and semiconductor materials with p-type and n-type conductivities having high thermoelectric figure of merit are necessary for operation of thermoelectric generators. The paper deals with possibility of usage of the p-Mg2Si0.3Sn0.7 solid solution (with a nanostructured modification) as a couple for the well studied thermoelectric material based on n-Mg2Si-Mg2Sn. A technological scheme for fabrication of heavily doped Mg2Si0.3Sn0.7 solid solution of p-type by hot pressing from nanopowder is developed. The given technology has made it possible to reduce duration of a homogeneous material fabrication and has improved its physical and chemical properties. The samples were made by three ways: direct fusion for polycrystals fabrication; hot pressing from microparticles; nanostructuring, i.e. hot pressing from nanoparticles. By X-ray diffraction it is shown that sizes of structural elements in the fabricated samples are about 40 nm. The probe technique is used for measurement of electric conductivity and Seebeck coefficient. The stationary absolute method is used for measurement of thermal conductivity. Thermoelectric figure of merit is defined by measured values of kinetic coefficients in the temperatures range of 77 – 800 K. It was demonstrated, that electric conductivity, Seebeck coefficient and the power factor do not depend practically on a way of solid solution preparation. Thermal conductivity of samples pressed from nanoparticles has appeared to be higher, than of samples, obtained by direct fusion; i.e. in this case nanostructuring has not led to increase of thermoelectric figure of merit. The conclusion is drawn, that polycrystalline semiconductor Mg2Si0.3Sn0.7 can be used as a p-branch for a thermoelectric generator though nanostructuring has not led to the figure of merit growth. The assumption is made, that thermoelectric figure of merit improvement can be expected at the further reduction of the nanograins size.

Keywords