Nauka i Tehnika (Aug 2019)
Сonceptual Fundamentals for Technology of Sand Disperse-Reinforced Asphalt Concrete
Abstract
A problem of efficient resource usage in road branch continues to be one of the most complicated issues and requires an intensification in investigation process pertaining to possibilities for production of road construction materials of low resource intensity with high physical and mechanical properties. Technogenic wastes of the Belarusian enterprises are rather various and they need a detailed investigation. Application of such methods as IR spectrometry, probe microscopy, study of of geometric characteristics of particles and fibers make it possible to determine more active centres and reveal micro-defects that influence on strength of adhesion bond at the boundary of “fiber – binder” and physical and mechanical properties of ready-mixed asphalt concrete. Nature of basalt fiber presupposes mainly physical character of adhesion interaction at the boundary of phase separation. An increase of technogenic waste activity to enhance adhesion contacts up to chemisorption level is possible only due to preliminary fiber processing which includes cleaning, removal of foreign inclusions, etching, drying, probable sorting-out and fluffing. Industrial approbation of such technological process is not possible without development of a corresponding module or a plant. Disperse reinforment causes changes in composition and technology of sand asphalt concrete. An increase in specific surface of an aggregate, necessity of uniform distribution of fiber in terms of volume determine the required need in a binder, procedure and regimes for component mixing. Grain composition of the aggregate can be represented by crush screening and natural sand of mixture of these materials. Requirements to properties of sand disperse-reinforced asphalt concrete are formed on the basis of operational conditions and layer arrangement of the material in the design of a surface dressing. The disperse-reinforced sand asphalt concrete can perform functions of a superfine protective layer, a levelling layer or a crack stopping layer which is resistant to fatigue crack formation.
Keywords