Solutions to the Schrödinger Equation: Nonlocal Terms and Geometric Constraints
Irina Petreska,
Pece Trajanovski,
Trifce Sandev,
Jonathan A. M. Almeida Rocha,
Antonio Sérgio Magalhães de Castro,
Ervin K. Lenzi
Affiliations
Irina Petreska
Institute of Physics, Faculty of Natural Sciences and Mathematics— Skopje, Ss. Cyril and Methodius University in Skopje, Arhimedova 3, 1000 Skopje, Macedonia
Pece Trajanovski
Institute of Physics, Faculty of Natural Sciences and Mathematics— Skopje, Ss. Cyril and Methodius University in Skopje, Arhimedova 3, 1000 Skopje, Macedonia
Trifce Sandev
Institute of Physics, Faculty of Natural Sciences and Mathematics— Skopje, Ss. Cyril and Methodius University in Skopje, Arhimedova 3, 1000 Skopje, Macedonia
Jonathan A. M. Almeida Rocha
Departamento de Física, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti 4748, Ponta Grossa 84030-900, PR, Brazil
Antonio Sérgio Magalhães de Castro
Departamento de Física, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti 4748, Ponta Grossa 84030-900, PR, Brazil
Ervin K. Lenzi
Departamento de Física, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti 4748, Ponta Grossa 84030-900, PR, Brazil
Here, we investigate a three-dimensional Schrödinger equation that generalizes the standard framework by incorporating geometric constraints. Specifically, the equation is adapted to account for a backbone structure exhibiting memory effects dependent on both time and spatial position. For this, we incorporate an additional term in the Schrödinger equation with a nonlocal dependence governed by short- or long-tailed distributions characterized by power laws associated with Lévy distributions. This modification also introduces a backbone structure within the system. We derive solutions that reveal various behaviors using Green’s function approach expressed in terms of Fox H-functions.