Scientific Reports (Sep 2021)

Spacetime in the brain: rapid brain network reorganization in visual processing and recovery

  • Zheng Wu,
  • Bernhard A. Sabel

DOI
https://doi.org/10.1038/s41598-021-96971-8
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Functional connectivity networks (FCN) are the physiological basis of brain synchronization to integrating neural activity. They are not rigid but can reorganize under pathological conditions or during mental or behavioral states. However, because mental acts can be very fast, like the blink of an eye, we now used the visual system as a model to explore rapid FCN reorganization and its functional impact in normal, abnormal and post treatment vision. EEG-recordings were time-locked to visual stimulus presentation; graph analysis of neurophysiological oscillations were used to characterize millisecond FCN dynamics in healthy subjects and in patients with optic nerve damage before and after neuromodulation with alternating currents stimulation and were correlated with visual performance. We showed that rapid and transient FCN synchronization patterns in humans can evolve and dissolve in millisecond speed during visual processing. This rapid FCN reorganization is functionally relevant because disruption and recovery after treatment in optic nerve patients correlated with impaired and recovered visual performance, respectively. Because FCN hub and node interactions can evolve and dissolve in millisecond speed to manage spatial and temporal neural synchronization during visual processing and recovery, we propose “Brain Spacetime” as a fundamental principle of the human mind not only in visual cognition but also in vision restoration.