Neural Regeneration Research (Jan 2015)
Neuroprotective effect of interleukin-6 regulation of voltage-gated Na+ channels of cortical neurons is time- and dose-dependent
- Wei Xia,
- Guo-yi Peng,
- Jiang-tao Sheng,
- Fang-fang Zhu,
- Jing-fang Guo,
- Wei-qiang Chen
Affiliations
- Wei Xia
- Guo-yi Peng
- Jiang-tao Sheng
- Fang-fang Zhu
- Jing-fang Guo
- Wei-qiang Chen
- DOI
- https://doi.org/10.4103/1673-5374.155436
- Journal volume & issue
-
Vol. 10,
no. 4
pp. 610 – 617
Abstract
Interleukin-6 has been shown to be involved in nerve injury and nerve regeneration, but the effects of long-term administration of high concentrations of interleukin-6 on neurons in the central nervous system is poorly understood. This study investigated the effects of 24 hour exposure of interleukin-6 on cortical neurons at various concentrations (0.1, 1, 5 and 10 ng/mL) and the effects of 10 ng/mL interleukin-6 exposure to cortical neurons for various durations (2, 4, 8, 24 and 48 hours) by studying voltage-gated Na + channels using a patch-clamp technique. Voltage-clamp recording results demonstrated that interleukin-6 suppressed Na + currents through its receptor in a time- and dose-dependent manner, but did not alter voltage-dependent activation and inactivation. Current-clamp recording results were consistent with voltage-clamp recording results. Interleukin-6 reduced the action potential amplitude of cortical neurons, but did not change the action potential threshold. The regulation of voltage-gated Na + channels in rat cortical neurons by interleukin-6 is time- and dose-dependent.
Keywords
- spinal cord injury
- propriospinal system
- neural plasticity
- fiber sprouting
- neural repair
- compensation
- regeneration
- propriospinal detours
- neurotrophic factors
- cell-adhesive ligands
- dorsal root ganglia
- L1CAM
- nerve growth factor
- biomaterials
- elastin-like proteins
- Alzheimer′s disease
- AMPK
- apoptosis
- autophagy
- central nervous system
- CCN4
- EGF
- diabetes mellitus
- erythropoietin
- EPO
- FGF
- IGF-1
- mTOR
- neuron
- neuropathy
- oxidative stress
- psychiatric
- stem cells
- WISP1
- Wnt
- peripheral nerve injury
- nerve graft
- nerve conduit
- Wallerian degeneration
- neurotrophic factors
- veins
- autografts
- nerve regeneration
- nerve regeneration
- neuroprotection
- resveratrol
- cerebral ischemia
- cerebral infarction
- matrix metalloproteinase
- molecular docking
- extracellular matrix
- neural regeneration
- nerve regeneration
- vagus nerve stimulation
- cerebral ischemia
- inflammatory cytokines
- infarct volume
- neurological function
- NSFC grants
- neural regeneration
- nerve regeneration
- Xingnao Kaiqiao needling method
- ischemic stroke
- randomized controlled trial
- systemic reviews
- meta-analysis
- long-term efficacy
- mortality
- recurrence
- disability
- adverse reactions
- health economics indicators
- neural regeneration
- nerve regeneration
- DDPH
- cerebral ischemia
- hippocampus
- blood flow
- isolated basilar artery
- dose-response curve
- NSFC grant
- neural regeneration
- nerve regeneration
- traumatic brain injury
- coma
- median nerve electrical stimulation
- wake-promoting
- orexin-A
- OX1R
- NSFC grants
- neural regeneration
- nerve regeneration
- seizure
- antiepileptic drugs
- immature brain
- hippocampus
- synaptic plasticity
- glutamate receptor
- NSFC grant
- neural regeneration
- nerve regeneration
- puerarin
- in vitro experiments
- co-culture
- neurons
- astrocytes
- Transwell
- neonatal rats
- neural regeneration
- nerve regeneration
- brain injury
- inflammatory reaction
- interleukin-6
- voltage-gated Na + channel
- cortical neurons
- cerebrospinal fluid
- neuroimmunomodulation
- neuroprotection
- action potential
- patch clamp
- neurophysiology
- NSFC grants
- neural regeneration