Novel method to achieve crystallinity of calcite by Bacillus subtilis in coupled and non-coupled calcium-carbon sources
Héctor Ferral-Pérez,
Mónica Galicia-García,
Bonifacio Alvarado-Tenorio,
Aldo Izaguirre-Pompa,
Marisela Aguirre-Ramírez
Affiliations
Héctor Ferral-Pérez
Laboratorio de Biología Celular y Molecular, Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez
Mónica Galicia-García
Laboratorio de Electroquímica, Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez
Bonifacio Alvarado-Tenorio
Laboratorio de Bioquímica Funcional y Proteómica del Estrés, Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez
Aldo Izaguirre-Pompa
Laboratorio de Geología, Departamento de Ingeniería Civil y Ambiental, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez
Marisela Aguirre-Ramírez
Laboratorio de Biología Celular y Molecular, Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez
Abstract Bacteria mineralization is a promising biotechnological approach to apply in biomaterials development. In this investigation, we demonstrate that Bacillus subtilis 168 induces and influences CaCO3 composites precipitation. Crystals were formed in calcium-carbon non-coupled (glycerol + CaCl2, GLY; or glucose + CaCl2, GLC) and coupled (calcium lactate, LAC; or calcium acetate, ACE) agar-sources, only maintaining the same Ca2+ concentration. The mineralized colonies showed variations in morphology, size, and crystallinity form properties. The crystals presented spherulitic growth in all conditions, and botryoidal shapes in GLC one. Birefringence and diffraction patterns confirmed that all biogenic carbonate crystals (BCC) were organized as calcite. The CaCO3 in BCC was organized as calcite, amorphous calcium carbon (ACC) and organic matter (OM) of biofilm; all of them with relative abundance related to bacteria growth condition. BCC-GLY presented greatest OM composition, while BCC-ACE highest CaCO3 content. Nucleation mechanism and OM content impacted in BCC crystallinity.