Micromachines (Jul 2023)

A Miniaturized Archimedean Screw Pump for High-Viscosity Fluid Pumping in Microfluidics

  • Sinan Gucluer

DOI
https://doi.org/10.3390/mi14071409
Journal volume & issue
Vol. 14, no. 7
p. 1409

Abstract

Read online

Microfluidic devices have revolutionized the field of lab-on-a-chip by enabling precise manipulation of small fluid volumes for various biomedical applications. However, most existing microfluidic pumps struggle to handle high-viscosity fluids, limiting their applicability in certain areas that involve bioanalysis and on-chip sample processing. In this paper, the design and fabrication of a miniaturized Archimedean screw pump for pumping high-viscosity fluids within microfluidic channels are presented. The pump was 3D-printed and operated vertically, allowing for continuous and directional fluid pumping. The pump’s capabilities were demonstrated by successfully pumping polyethylene glycol (PEG) solutions that are over 100 times more viscous than water using a basic mini-DC motor. Efficient fluid manipulation at low voltages was achieved by the pump, making it suitable for point-of-care and field applications. The flow rates of water were characterized, and the effect of different screw pitch lengths on the flow rate was investigated. Additionally, the pump’s capacity for pumping high-viscosity fluids was demonstrated by testing it with PEG solutions of increasing viscosity. The microfluidic pump’s simple fabrication and easy operation position it as a promising candidate for lab-on-a-chip applications involving high-viscosity fluids.

Keywords