Nanomaterials (Jul 2019)

Molecular Dynamics Simulation on Mechanical and Piezoelectric Properties of Boron Nitride Honeycomb Structures

  • Lu Xie,
  • Tianhua Wang,
  • Chenwei He,
  • Zhihui Sun,
  • Qing Peng

DOI
https://doi.org/10.3390/nano9071044
Journal volume & issue
Vol. 9, no. 7
p. 1044

Abstract

Read online

Boron nitride honeycomb structure is a new three-dimensional material similar to carbon honeycomb, which has attracted a great deal of attention due to its special structure and properties. In this paper, the tensile mechanical properties of boron nitride honeycomb structures in the zigzag, armchair and axial directions are studied at room temperature by using molecular dynamics simulations. Effects of temperature and strain rate on mechanical properties are also discussed. According to the observed tensile mechanical properties, the piezoelectric effect in the zigzag direction was analyzed for boron nitride honeycomb structures. The obtained results showed that the failure strains of boron nitride honeycomb structures under tensile loading were up to 0.83, 0.78 and 0.55 in the armchair, zigzag and axial directions, respectively, at room temperature. These findings indicated that boron nitride honeycomb structures have excellent ductility at room temperature. Moreover, temperature had a significant effect on the mechanical and tensile mechanical properties of boron nitride honeycomb structures, which can be improved by lowering the temperature within a certain range. In addition, strain rate affected the maximum tensile strength and failure strain of boron nitride honeycomb structures. Furthermore, due to the unique polarization of boron nitride honeycomb structures, they possessed an excellent piezoelectric effect. The piezoelectric coefficient e obtained from molecular dynamics was 0.702   C / m 2 , which was lower than that of the monolayer boron nitride honeycomb structures, e = 0.79   C / m 2 . Such excellent piezoelectric properties and failure strain detected in boron nitride honeycomb structures suggest a broad prospect for the application of these new materials in novel nanodevices with ultrahigh tensile mechanical properties and ultralight-weight materials.

Keywords