Tellus: Series A, Dynamic Meteorology and Oceanography (May 2015)

Improved understanding of an extreme rainfall event at the Himalayan foothills – a case study using COSMO

  • Prabhakar Shrestha,
  • Ashok Priyadarshan Dimri,
  • Annika Schomburg,
  • Clemens Simmer

DOI
https://doi.org/10.3402/tellusa.v67.26031
Journal volume & issue
Vol. 67, no. 0
pp. 1 – 13

Abstract

Read online

In recent years, an increased occurrence of loss and damage of property and human casualties over the southern rim area of the Himalayas, caused by landslides following intense rainfall events, has been reported. An analysis of Tropical Rainfall Measuring Mission (TRMM)-gridded rainfall data shows that events with an exceedance probability of 1.6% for 200 mm/d rainfall are common over this region during the monsoon season. An improved understanding of the mechanisms, which lead to such events, is important for their prediction and to estimate the impact of climate change on their recurrence. In this study, we analyse such an extreme precipitation event, which hit the Uttarakhand region of the central Himalayas on 13 September 2012. We use the operational regional weather forecast model COSMO at a convection-permitting resolution of 2.8 km to simulate this event. The spatial pattern of daily-accumulated precipitation and atmospheric state profiles simulated by the model compared well with the TRMM-gridded data and radiosonde observations, which adds confidence to our model results. Our analysis suggests a three-step mechanism leading to this event: (1) development of an easterly low-level wind along the Gangetic Plain caused by a low pressure system over the central Gangetic Plain; (2) convergence of moisture over the north-western part of India, leading to an increase of potential instability of the air mass along the valley recesses, which is capped by an inversion located above the ridgeline; and (3) strengthening of the north-westerly flow above the ridges, which supports the lifting of the potentially unstable air over the protruding ridge of the foothills of the Himalayas and triggers shallow convection, which on passing through adjacent folds initiates deep convection.

Keywords