Egyptian Journal of Remote Sensing and Space Sciences (Dec 2023)

Estimation of national sources and sinks of greenhouse gases based on satellite observations

  • Naglaa Zanaty,
  • Elham M. Ali,
  • Islam Abou El-Magd

Journal volume & issue
Vol. 26, no. 4
pp. 1071 – 1079

Abstract

Read online

Human-driven Greenhouse gases (GHGs) are the most significant contributor to climate change. World countries and Egypt are moving towards achieving sustainable development goals (SDGs) 2030, and 2050, to reach Net-Zero emissions. Based on satellite observations, this research assesses and monitors the GHG emissions induced by human activities in Egypt. Different satellite sensors were utilized in this study to obtain Methane (CH4), Carbon Dioxide (CO2) amounts during 2015–2022. To get a deeper insight into the effects of anthropogenic activities on CO2 and CH4 amounts, they were correlated with land use and land cover, fire incidents, and industrial activities in Egypt. Results revealed a noticeable increase in CH4 and CO2 emissions over the country with a maximum level in 2022. CO2 has a seasonal variation mode, with the highest amounts in spring reaching 0.000409 CO2/mol dry-air. As well, the high CH4 concentration fluctuates all the year-round, with a peak around 1890 ppbv in August. The high levels of GHGs mostly concentrated in the Nile Delta and Nile Valley, where most of the anthropogenic activities are existing. Fire incidents, industries, and land cover change maps showed a spatial matching with the high emission zones. However, the emissions are increasing in Egypt it does not exceed the global average. In conclusion, unmanaged human activities in Egypt increased GHGs release and affected environmental sustainability. This study attempts to better understand the ambient environment in Egypt and support the decision-makers with full insight into the GHG emission hotspots in the country to mitigate their release into the atmosphere and achieve Net-Zero emissions.

Keywords