BMC Plant Biology (Oct 2024)

La (NO3)3 substantially fortified Glycyrrhiza uralensis’s resilience against salt stress by interconnected pathways

  • Tingting Jia,
  • Junjun Gu,
  • Miao Ma

DOI
https://doi.org/10.1186/s12870-024-05644-x
Journal volume & issue
Vol. 24, no. 1
pp. 1 – 18

Abstract

Read online

Abstract The taproot of Glycyrrhiza uralensis is globally appreciated for its medicinal and commercial value and is one of the most popular medicinal plants. With the decline of wild G. uralensis resources, cultivated G. uralensis has become a key method to ensure supply. However, soil salinization poses challenges to G. uralensis cultivation and affects the yield and quality of it. In this study, the inhibitory effects of NaCl and Na2SO4 on yield and quality of G. uralensis were comprehensively evaluated in a three-year large-scale pot experiment, and the alleviating effects of supplementation with lanthanum nitrate (La (NO3)3) on G. uralensis were further evaluated under salt stress. The findings indicate that La (NO3)3 significantly strengthened the plant's salt tolerance by enhancing photosynthetic capacity, osmolyte accumulation, antioxidant defenses, and cellular balance of ions, which led to a substantial increase in root biomass and accumulation of major medicinal components. In comparison to the NaCl-stress treatment, the 0.75 M La (NO3)3 + NaCl treatment resulted in a 20% and 34% increase in taproot length and biomass, respectively, alongside a 52% and 43% rise in glycyrrhizic acid and glycyrrhizin content, respectively. Similar improvements were observed with 0.75 M La (NO3)3 + Na2SO4 treatment, which increased root length and biomass by 14% and 26%, respectively, and glycyrrhizic acid and glycyrrhizin content by 40% and 38%, respectively. The combined showed that application of La (NO3)3 not only significantly improved the salt resilience of G. uralensis, but also had a more pronounced alleviation of growth inhibition induced by NaCl compared to Na2SO4 stress except in the gas exchange parameters and root growth. This study provides a scientific basis for high-yield and high-quality cultivation of G. uralensis in saline soils and a new approach for other medicinal plants to improve their salt tolerance. Graphical Abstract

Keywords