Scientific Reports (Sep 2024)
Deoxybouvardin targets EGFR, MET, and AKT signaling to suppress non-small cell lung cancer cells
Abstract
Abstract Non-small cell lung cancer (NSCLC) remains a significant challenge, as it is one of the leading causes of cancer-related deaths, and the development of resistance to anticancer therapy makes it difficult to treat. In this study, we investigated the anticancer mechanism of deoxybouvardin (DB), a cyclic hexapeptide, in gefitinib (GEF)-sensitive and -resistant NSCLC HCC827 cells. DB inhibited the viability and growth of HCC827 cells in a concentration- and time-dependent manner. In vitro kinase assay showed DB inhibited epidermal growth factor receptor (EGFR), mesenchymal–epithelial transition (MET), and AKT, and their phosphorylation was suppressed in HCC827 cells treated with DB. A molecular docking model suggested that DB interacts with these kinases in the ATP-binding pockets. DB induces ROS generation and cell cycle arrest. DB treatment of HCC827 cells leads to mitochondrial membrane depolarization. The induction of apoptosis through caspase activation was confirmed by Z-VAD-FMK treatment. Taken together, DB inhibited the growth of both GEF-sensitive and GEF-resistant NSCLC cells by targeting EGFR, MET, and AKT and inducing ROS generation and caspase activation. Further studies on DB can improve the treatment of chemotherapy-resistant NSCLC through the development of effective DB-based anticancer agents.
Keywords