BMC Microbiology (Aug 2022)
Long-term watermelon continuous cropping leads to drastic shifts in soil bacterial and fungal community composition across gravel mulch fields
Abstract
Abstract Despite the known influence of continuous cropping on soil microorganisms, little is known about the associated difference in the effects of continuous cropping on the community compositions of soil bacteria and fungi. Here, we assessed soil physicochemical property, as well as bacterial and fungal compositions across different years (Uncropped control, 1, 6, 11, 16, and 21 years) and in the watermelon system of a gravel mulch field in the Loess Plateau of China. Our results showed that long-term continuous cropping led to substantial shifts in soil bacterial and fungal compositions. The relative abundances of dominant bacterial and fungal genera (average relative abundance > 1.0%) significantly varied among different continuous cropping years (P < 0.05). Structural equation models demonstrated that continuous cropping alter soil bacterial and fungal compositions mainly by causing substantial variations in soil attributes. Variations in soil pH, nutrient, salinity, and moisture content jointly explained 73% and 64% of the variation in soil bacterial and fungal compositions, respectively. Variations in soil moisture content and pH caused by continuous cropping drove the shifts in soil bacterial and fungal compositions, respectively (Mantel R = 0.74 and 0.54, P < 0.01). Furthermore, the variation in soil bacterial and fungal composition showed significant correlation with watermelon yield reduction (P < 0.01). Together, long-term continuous cropping can alter soil microbial composition, and thereby influencing watermelon yield. Our findings are useful for alleviating continuous cropping obstacles and guiding agricultural production.
Keywords