Journal of the Formosan Medical Association (Mar 2022)
Characterization of the stemness and osteogenic potential of oral and sinus mucosal cells
Abstract
Background/purpose: Covering the wounds from guided bone regeneration and sinus floor elevation with oral and sinus mucosa is a fundamental criterion for success. This study aimed to verify the regeneration capability of the mucosal connective tissue stromal cells by characterizing their stemness and osteogenic potentials. Methods: Bone marrow stromal cells (BMSCs), alveolar mucosa cells (AMCs), keratinized gingival cells (KGCs), and sinus mucosal cells (SMCs), were isolated from four Sprague–Dawley rats. The morphology and viability of the cells were investigated under a confocal microscope and by Alamar Blue. Stem cell surface markers were evaluated by flow cytometry. Expressions of pluripotent factors after initial seeding and an early osteogenic gene following 24 h of osteoinduction were evaluated by realtime PCR. Trilineage differentiation capability in long-term inductive cell culture was assessed by Alizarin Red, Alcian Blue, and Oil Red O staining. Results: BMSCs and AMCs were larger cells with smaller aspect ratios relative to KGCs and SMCs, and BMSCs revealed the greatest initial viability but the slowest proliferation. More than 94% of BMSCs, AMCs, and KGCs were double-positive for CD73 and CD90. Compared with BMSCs, AMCs expressed significantly higher Oct4 but reduced Cbfa1 after initial seeding, and AMCs and SMCs expressed significantly higher Cbfa1 following 24 h of osteoinduction. In long-term inductive cell culture, osteogenesis was observed in BMSCs, AMCs, and SMCs, chondrogenesis was observed in BMSCs, AMCs, and KGCs, and adipogenesis was evident in only BMSCs. Conclusion: AMCs contain a high percentage of stem/progenitor cells and show differentiation capability toward osteogenic lineage.