Materials (May 2024)

Efficient Electrocatalytic Ammonia Synthesis via Theoretical Screening of Titanate Nanosheet-Supported Single-Atom Catalysts

  • Kaiheng Zhao,
  • Jingnan Wang,
  • Yongan Yang,
  • Xi Wang

DOI
https://doi.org/10.3390/ma17102239
Journal volume & issue
Vol. 17, no. 10
p. 2239

Abstract

Read online

The electrocatalytic nitrogen reduction reaction (NRR) for synthesizing ammonia holds promise as an alternative to the traditional high-energy-consuming Haber–Bosch method. Rational and accurate catalyst design is needed to overcome the challenge of activating N2 and to suppress the competitive hydrogen evolution reaction (HER). Single-atom catalysts have garnered widespread attention due to their 100% atom utilization efficiency and unique catalytic performance. In this context, we constructed theoretical models of metal single-atom catalysts supported on titanate nanosheets (M-TiNS). Initially, density functional theory (DFT) was employed to screen 12 single-atom catalysts for NRR- and HER-related barriers, leading to the identification of the theoretically optimal NRR catalyst, Ru-TiNS. Subsequently, experimental synthesis of the Ru-TiNS single-atom catalyst was successfully achieved, exhibiting excellent performance in catalyzing NRR, with the highest NH3 yield rate reaching 15.19 μmol mgcat−1 h−1 and a Faradaic efficiency (FE) of 15.3%. The combination of experimental results and theoretical calculations demonstrated the efficient catalytic ability of Ru sites, validating the effectiveness of the constructed theoretical screening process and providing a theoretical foundation for the design of efficient NRR catalysts.

Keywords