Parkinson's Disease (Jan 2022)

Functional MAOB Gene Intron 13 Polymorphism Predicts Dyskinesia in Parkinson’s Disease

  • Matthias Löhle,
  • Graziella Mangone,
  • Wiebke Hermann,
  • Denise Hausbrand,
  • Martin Wolz,
  • Julia Mende,
  • Heinz Reichmann,
  • Andreas Hermann,
  • Jean-Christophe Corvol,
  • Alexander Storch

DOI
https://doi.org/10.1155/2022/5597503
Journal volume & issue
Vol. 2022

Abstract

Read online

Identification of individual risk factors for motor complications in Parkinson’s disease (PD) can help to guide personalised medical treatment, particularly since treatment options are still limited. To determine whether common functional gene polymorphisms in the dopamine metabolism predict the onset of motor complications in PD, we performed a retrospective, observer-blinded follow-up study of 30 PD patients who underwent genotyping of dopa-decarboxylase (DDC; rs921451), monoamine oxidase B (MAOB; rs1799836), catechol-O-methyltransferase (COMT; rs4680), and dopamine transporter (DAT; variable number tandem repeat) polymorphisms. Onset of wearing-off and dyskinesias was determined by blinded clinical assessments. Predictive values of genotypes for motor complications were evaluated using Cox proportional hazard models. During a median follow-up time of 11.6 years, 23 (77%) of 30 PD patients developed wearing-off, 16 (53%) dyskinesias, and 23 (77%) any motor complication. The MAOB (rs1799836) polymorphism predicted development of dyskinesias with MAOBCC/(C)/CT genotypes (resulting in low/intermediate brain enzyme activity) being associated with lower hazard ratios (unadjusted HR [95% CI]: 0.264 [0.089–0.787]; p=0.012; adjusted HR [95% CI]: 0.142 [0.039–0.520]; p=0.003) than MAOBTT/(T) genotypes (resulting in high brain enzyme activity). DDC (rs921451), COMT (rs4680), and DAT (VNTR) polymorphisms were not predictive of motor complications. Together, the MAOB (rs1799836) polymorphism predicts the development of dyskinesias in PD patients. Our results need confirmation in larger cohorts. If confirmed, individual assessment of this polymorphism might be helpful for early risk stratification and could comprise a step towards patient-tailored therapeutic strategies to prevent or delay motor complications in the course of PD.