IEEE Access (Jan 2021)
Variable Forgetting Factor-Based Adaptive Kalman Filter With Disturbance Estimation Considering Observation Noise Reduction
Abstract
This paper addresses the influence reduction of quantization and observation noises in a disturbance observer (DOB) technique. DOB is a disturbance estimation method that makes control systems robust. However, in implementing low-resolution sensors, disturbance estimates from DOB are considerably influenced by observation and quantization noises. In this paper, a novel DOB design method for simultaneous estimation of state and unknown disturbances, including the reduction of noise influences, is proposed. The proposed method is divided into two components. The first component is a Kalman filter (KF)-based DOB for simultaneous estimation of state and unknown disturbances. To improve the estimation performance through the KF-based DOB, a forgetting factor-based adaptive KF (FAKF) was employed. The second component is an adaptive law for the forgetting factor in the FAKF. The adaptive law is used for balancing the estimation accuracy and observation noise reduction. Simulation results involving various types of noise environments demonstrate the effectiveness of the proposed method.
Keywords