Energies (Oct 2018)
Electromagnetic Transient-Transient Stability Analysis Hybrid Real-Time Simulation Method of Variable Area of Interest
Abstract
To make the object of electromagnetic transient (EMT) simulation flexible to change, the authors propose using the method of electromagnetic transient-transient stability analysis (TSA) hybrid real-time simulation of the variable area of interest. The area where the fault is to be set, or where the operation takes place, is defined as the area of interest. The simulation object is divided into multiple sub-networks. The EMT simulation range is determined according to the voltage drop depth at the boundary of the adjacent sub-network caused by the three-phase short-circuit fault at the boundary of an area of interest. The Norton equivalent is obtained by using the sub-network as a basic unit. The electromagnetic sub-network forms its own Norton equivalent on the TSA side by means of the Norton equivalent admittance of its TSA model. Based on this, the overall framework of hybrid real-time simulation of the variable area of interest is constructed. The fundamental phasor prediction and Norton equivalent current source prediction are adopted to reduce the interface error. The performance of the proposed method in terms of feasibility, flexibility, and effectiveness have been verified by the simulation studies on the IEEE 118-bus system.
Keywords