Mathematics (Feb 2023)
Numerical Scrutinization of Ternary Nanofluid Flow over an Exponentially Stretching Sheet with Gyrotactic Microorganisms
Abstract
In the modern age, the study of nanofluids over the stretching sheet has received much attention from researchers due to its significant role in the polymer industry, for instance in the production of fibre sheets and the extrusion of molten polymers through a slit die. Due to these affordable applications, the current study focusses on the motion of metallic ternary nanofluids (Ag-Au-Cu/H2O) past an exponential stretching sheet, taking diverse effects such as gyrotactic microorganisms, activation energy, buoyancy forces and thermal radiation into consideration. The model was created with the complex system of partial differential equations. Suitable similarity transformations and non-dimensional quantities were utilized to transform the complex system of partial differential equations to a set of ordinary differential equations. The resultant system is solved with the help of Matlab software. The computational outcomes are presented through the tables and pictorial notations. It is observed from the current analysis that the nanoparticle temperature of the ternary nanofluid enhances with the enhancement of activation energy and Brownian motion parameters. For the rising values of Lewis and thermophoresis numbers there is a declination in the nanoparticle concentration distribution. The Brownian motion and radiation effects increase the microorganism profile.
Keywords