PLoS ONE (Jan 2014)

MicroRNA-383 regulates the apoptosis of tumor cells through targeting Gadd45g.

  • Lei Zhao,
  • Haihui Gu,
  • Jianfeng Chang,
  • Junyu Wu,
  • Daliang Wang,
  • Su Chen,
  • Xiaomei Yang,
  • Baohua Qian

DOI
https://doi.org/10.1371/journal.pone.0110472
Journal volume & issue
Vol. 9, no. 11
p. e110472

Abstract

Read online

BACKGROUND: MicroRNAs (miRNAs) are a class of small non-coding single-stranded RNA molecules that inhibit gene expression at post-transcriptional level. Gadd45g (growth arrest and DNA-damage-inducible 45 gamma) is a stress-response protein, which has been implicated in several biological processes, including DNA repair, the cell cycle and cell differentiation. RESULTS: In this work, we found that miR-383 is a negative regulator of Gadd45g. Forced expression of miR-383 decreased the expression of Gadd45g through binding to the 3' untranslated region (3'-UTR), whereas inhibition of miR-383 increased Gadd45g expression. The presence of miR-383 increased the cellular sensitivity to DNA damage in breast cancer cells, which was rescued by ectopic expression of Gadd45g without the 3'-UTR. miR-383 also regulates the expression of Gadd45g in embryonic stem (ES) cells, but not their apoptosis under genotoxic stress. miR-383 was further showed to negatively regulate ES cell differentiation via targeting Gadd45g, which subsequently modulates the pluripotency-associated genes. Taken together, our study demonstrates that miR-383 is a negative regulator of Gadd45g in both tumor cells and ES cells, however, has distinct function in regulating cell apoptosis. miR-383 may be used as antineoplastic agents in cancer chemotherapy. CONCLUSION: We demonstrate for the first time that miR-383 can specifically regulates the expression of Gadd45g by directly targeting to the 3-UTR region of Gadd45g mRNA, a regulatory process conserved in human tumor cells and mouse embryonic stem cells. These two compotents can be potentially used as antineoplastic agents in cancer chemotherapy.