Fractal and Fractional (Feb 2024)
Fractional-Order Load Frequency Control of an Interconnected Power System with a Hydrogen Energy-Storage Unit
Abstract
Modern power systems are confronted with widespread concern on the frequency stability issue due to the widespread integration of randomly fluctuating renewable resources. To address the above concern, this work introduces a load-frequency-control (LFC) scheme based on a parameter tuning strategy for fractional-order proportional–integral–derivative (FOPID) controller. Firstly, a two-area interconnected power system (IPS) model, including thermal, hydro, solar, wind, and gas power generator and a hydrogen-based energy-storage unit, is established. Then, a FOPID controller is designed for this IPS model, and an improved gradient-based optimizer (IGBO) is developed to adaptively regulate the parameters of the FOPID controllers. Finally, the effectiveness of the offered LFC scheme is tested through load disturbance and renewable energy fluctuations test scenarios and provides a comparison and robustness analysis among different schemes. The test results validated that the offered LFC scheme can effectively suppress the frequency fluctuations of the IPS and has excellent robustness.
Keywords