Campus (Oct 2020)

Barreras epistemológicas para la arquitectura de los datos y la significación en el modelo predictivo de la ciencia

  • George Argota Pérez

DOI
https://doi.org/10.24265/campus.2020.v25n30.08
Journal volume & issue
Vol. 25, no. 30
pp. 329 – 335

Abstract

Read online

Los datos y la significación representan estructuras secuenciales para la relevancia científica. El propósito del estudio fue identificar barreras epistemológicas en la arquitectura de los datos y la significación del modelo predictivo de la ciencia. El estudio se realizó desde enero hasta julio del 2020 seleccionándose mediante un muestreo probabilístico aleatorio, 100 artículos de Scopus donde se accedió a través, de la plataforma ScienceDirect como herramienta científica de búsqueda. Las estructuras secuenciales se compararon mediante la prueba t-Student considerándose significativos los resultados con un nivel de confianza del 95% y dónde se encontró diferencias entre ellas (t = -53,88; p = 7,09). Se observó que, el análisis de los datos fue menos relevante en comparación con la importancia que se atribuye a su significación. Se concluyó que, la identificación de las barreras epistemológicas para la arquitectura de los datos y la significación en el modelo predictivo de la ciencia representa una guía a considerarse para la medición de las variables y su interpretación hacia un conocimiento científico.

Keywords