Scientific Reports (Mar 2024)
Preparation and performance evaluation of a novel temperature-resistant anionic/nonionic surfactant
Abstract
Abstract Aiming at oil extraction from a tight reservoir, the Jilin oil field was selected as the research object of this study. Based on the molecular structures of conventional long-chain alkyl anionic surfactants, a new temperature-resistant anionic/nonionic surfactant (C8P10E5C) was prepared by introducing polyoxyethylene and polyoxypropylene units into double-chain alcohols. The resulting structures were characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (1H-NMR), and electrospray ionization mass spectrometry (ESI–MS). Then, based on surface tension, interfacial tension, adsorption resistance, wettability, and emulsification performance tests, the performance of C8P10E5C was evaluated. The FT-IR, ESI–MS, and NMR spectra confirmed that C8P10E5C was successfully prepared. The critical micelle concentration (CMC) of C8P10E5C in water was 2.9510 × 10−4 mol/L (the corresponding mass concentration is 0.26%), and the surface tension of the aqueous C8P10E5C solution at this concentration was 30.5728 mN/m. At 0.3% concentration, the contact angle of the C8P10E5C solution was 31.4°, which is 60.75% lower than the initial contact angle. Under high-temperature conditions, C8P10E5C can still reduce the oil–water interfacial tension to 10−2 mN/m, exhibiting good temperature resistance. At 110 °C, upon adsorption to oil sand, the C8P10E5C solution could reduce the oil–water interfacial tension to 0.0276 mN/m, and the interfacial tension can still reach the order of 10−2 mN/m, indicating that C8P10E5C has strong anti-adsorption capability. Additionally, it has good emulsifying performance; upon forming an emulsion with crude oil, the highest drainage rate was only 50%. The forced imbibition oil recovery of C8P10E5C is 65.8%, which is 38.54, 24.22, and 27.25% higher than those of sodium dodecyl benzene sulfonate, alkyl polyoxyethylene ether carboxylate, and alkyl ether carboxylate, respectively.
Keywords