Journal of Immunology Research (Jan 2019)

CD38 Deficiency Downregulates the Onset and Pathogenesis of Collagen-Induced Arthritis through the NF-κB Pathway

  • Yuna Du,
  • Qianqian Dai,
  • Huiqing Zhang,
  • Qi Li,
  • Kuangyu Song,
  • Yingyuan Fu,
  • Weiping Min,
  • Zhenlong Liu,
  • Rong Li

DOI
https://doi.org/10.1155/2019/7026067
Journal volume & issue
Vol. 2019

Abstract

Read online

Aim. The RelB gene plays an important role in guiding the progression of arthritis. We have previously demonstrated that the expression of the RelB gene is decreased significantly in bone marrow DCs of CD38-/- mice. In this study, we demonstrate that the cluster of the differentiation (CD38) gene could be a potentially therapeutic target for autoimmune arthritis. Method. Collagen-induced arthritis (CIA) models were generated with both the wild-type (WT) C57BL/6 and CD38-/- mice. The expression of the RelB gene and maturation of bone marrow-derived dendritic cells (DCs) from the WT and CD38-/- mice were detected. Antigen-specific T cell responses, joint damage, and expression of proinflammatory cytokines were assessed. The effects of the Nuclear Factor Kappa B (NF-κB) transcription factor and its mechanisms were characterized. Results. We demonstrated that in CD38-/- mice, the expression of the RelB gene and major histocompatibility complex II (MHC II) was decreased, accompanied with the inhibited T cell reaction in a mixed lymphocyte reaction (MLR) in bone marrow-derived DCs. Compared to the serious degeneration of the cartilage and the enlarged gap of the cavum articular in WT CIA mice, joint pathological changes of the CD38-/- CIA mice revealed marked attenuation, while the joint structures were well preserved. The preserved effects were observed by the inhibition of proinflammatory cytokines and promotion of anti-inflammatory cytokines. Furthermore, decreased phosphorylation of NF-κB was also observed in CD38-/- CIA mice. Conclusion. We demonstrate that CD38 could regulate CIA through NF-κB and this regulatory molecule could be a novel target for the treatment of autoimmune inflammatory joint disease.