Marine Drugs (Jan 2020)

Synthesis of Bioactive Silver Nanoparticles by a <i>Pseudomonas</i> Strain Associated with the Antarctic Psychrophilic Protozoon <i>Euplotes focardii</i>

  • Maria Sindhura John,
  • Joseph Amruthraj Nagoth,
  • Kesava Priyan Ramasamy,
  • Alessio Mancini,
  • Gabriele Giuli,
  • Antonino Natalello,
  • Patrizia Ballarini,
  • Cristina Miceli,
  • Sandra Pucciarelli

DOI
https://doi.org/10.3390/md18010038
Journal volume & issue
Vol. 18, no. 1
p. 38

Abstract

Read online

The synthesis of silver nanoparticles (AgNPs) by microorganisms recently gained a greater interest due to its potential to produce them in various sizes and morphologies. In this study, for AgNP biosynthesis, we used a new Pseudomonas strain isolated from a consortium associated with the Antarctic marine ciliate Euplotes focardii. After incubation of Pseudomonas cultures with 1 mM of AgNO3 at 22 °C, we obtained AgNPs within 24 h. Scanning electron (SEM) and transmission electron microscopy (TEM) revealed spherical polydispersed AgNPs in the size range of 20−70 nm. The average size was approximately 50 nm. Energy dispersive X-ray spectroscopy (EDS) showed the presence of a high intensity absorption peak at 3 keV, a distinctive property of nanocrystalline silver products. Fourier transform infrared (FTIR) spectroscopy found the presence of a high amount of AgNP-stabilizing proteins and other secondary metabolites. X-ray diffraction (XRD) revealed a face-centred cubic (fcc) diffraction spectrum with a crystalline nature. A comparative study between the chemically synthesized and Pseudomonas AgNPs revealed a higher antibacterial activity of the latter against common nosocomial pathogen microorganisms, including Escherichia coli, Staphylococcus aureus and Candida albicans. This study reports an efficient, rapid synthesis of stable AgNPs by a new Pseudomonas strain with high antimicrobial activity.

Keywords