International Journal of Molecular Sciences (Apr 2018)

Antitumor Effect of Calcium-Mediated Destabilization of Epithelial Growth Factor Receptor on Non-Small Cell Lung Carcinoma

  • In Un Kim,
  • In Sung Sung,
  • Jae Jun Sim,
  • Minhee Park,
  • Keun-Yeong Jeong,
  • Hwan Mook Kim

DOI
https://doi.org/10.3390/ijms19041158
Journal volume & issue
Vol. 19, no. 4
p. 1158

Abstract

Read online

Despite the development of numerous therapeutics targeting the epithelial growth factor receptor (EGFR) for non-small cell lung carcinoma (NSCLC), the application of these drugs is limited because of drug resistance. Here, we investigated the antitumor effect of calcium-mediated degradation of EGFR pathway-associated proteins on NSCLC. First, lactate calcium salt (LCS) was utilized for calcium supplementation. Src, α-tubulin and EGFR levels were measured after LSC treatment, and the proteins were visualized by immunocytochemistry. Calpeptin was used to confirm the calcium-mediated effect of LCS on NSCLC. Nuclear expression of c-Myc and cyclin D1 was determined to understand the underlying mechanism of signal inhibition following EGFR and Src destabilization. The colony formation assay and a xenograft animal model were used to confirm the in vitro and in vivo antitumor effects, respectively. LCS supplementation reduced Src and α-tubulin expression in NSCLC cells. EGFR was destabilized because of proteolysis of Src and α-tubulin. c-Myc and cyclin D1 expression levels were also reduced following the decrease in the transcriptional co-activation of EGFR and Src. Clonogenic ability and tumor growth were significantly inhibited by LSC treatment-induced EGFR destabilization. These results suggest that other than specifically targeting EGFR, proteolysis of associated molecules such as Src or α-tubulin may effectively exert an antitumor effect on NSCLC via EGFR destabilization. Therefore, LCS is expected to be a good candidate for developing novel anti-NSCLC therapeutics overcoming chemoresistance.

Keywords