PLoS Neglected Tropical Diseases (Nov 2021)

Dengue and Zika virus infection patterns vary among Aedes aegypti field populations from Belo Horizonte, a Brazilian endemic city

  • Raquel Soares Maia Godoy,
  • Luiza dos Santos Felix,
  • Alessandra da Silva Orfanó,
  • Bárbara Aparecida Chaves,
  • Paula Monalisa Nogueira,
  • Breno dos Anjos Costa,
  • Aline Silva Soares,
  • Cinthia Catharina Azevedo Oliveira,
  • Rafael Nacif-Pimenta,
  • Breno Mello Silva,
  • Ana Paula Duarte,
  • Marcus Vinicius Guimarães de Lacerda,
  • Wuelton Marcelo Monteiro,
  • Nágila Francinete Costa Secundino,
  • Paulo Filemon Paolucci Pimenta

Journal volume & issue
Vol. 15, no. 11

Abstract

Read online

Dengue virus (DENV) and Zika virus (ZIKV) belong to the same viral family, the Flaviviridae. They cause recurring threats to the public health systems of tropical countries such as Brazil. The primary Brazilian vector of both viruses is the mosquito Aedes aegypti. After the mosquito ingests a blood meal from an infected person, the viruses infect and replicate in the midgut, disseminate to secondary tissues and reach the salivary gland (SG), where they are ready to be transmitted to a vertebrate host. It is thought that the intrinsic discrepancies among mosquitoes could affect their ability to deal with viral infections. This study confirms that the DENV and ZIKV infection patterns of nine Ae. aegypti field populations found in geographically separate health districts of an endemic Brazilian city vary. We analyzed the infection rate, disseminated infection, vector competence, and viral load through quantitative PCR. Mosquitoes were challenged using the membrane-feeding assay technique and were tested seven and fourteen days post-infection (early and late infection phases, respectively). The infection responses varied among the Ae. aegypti populations for both flaviviruses in the two infection phases. There was no similarity between DENV and ZIKV vector competencies or viral loads. According to the results of our study, the risk of viral transmission overtime after infection either increases or remains unaltered in ZIKV infected vectors. However, the risk may increase, decrease, or remain unaltered in DENV-infected vectors depending on the mosquito population. For both flaviviruses, the viral load persisted in the body even until the late infection phase. In contrast to DENV, the ZIKV accumulated in the SG over time in all the mosquito populations. These findings are novel and may help direct the development of control strategies to fight dengue and Zika outbreaks in endemic regions, and provide a warning about the importance of understanding mosquito responses to arboviral infections. Author summary Dengue and Zika are neglected diseases caused by viruses transmitted to humans by mosquitoes (vector-borne diseases). The primary vector of both diseases is Aedes aegypti, a highly abundant mosquito in tropical countries and adapted to the urban habitat. The viral cycle in the vector starts when the mosquito bites an infected person and acquires the viruses through the blood meal. When the infected blood reaches the mosquito’s midgut, the viruses invade the epithelial cells and disseminate in several organs until they reach the salivary glands, enabling viral transmission to the next person. However, the mosquitoes have developed strategies to combat the viral invasion and dissemination in their body, making this journey a challenge to the viruses. Herein, we show that the mosquito responses against dengue and Zika viruses are distinct. In addition, mosquitoes from separate populations of the same city have different abilities to deal with the viruses in both cases, dengue and Zika infections. Our results show the diversity of responses that the mosquitoes may present to viral infections. These findings may better direct disease control strategies to combat dengue and Zika outbreaks in endemic regions.