Applied System Innovation (Jul 2025)
Hybrid Model-Based Traffic Network Control Using Population Games
Abstract
Modern traffic management requires sophisticated approaches to address the complexities of urban road networks, which continue to grow in complexity due to increasing urbanization and vehicle usage. Traditional methods often fall short in mitigating congestion and optimizing traffic flow, inducing the exploration of innovative traffic control strategies based on advanced theoretical frameworks. In this sense, we explore different game theory-based control strategies in an eight-intersection traffic network modeled by means of hybrid systems and graph theory, using a software simulator that combines the multi-modal traffic simulation software VISSIM and MATLAB to integrate traffic network parameters and population game criteria. Across five distinct network scenarios with varying saturation conditions, we explore a fixed-time scheme of signaling by means of fictitious play dynamics and adaptive schemes, using dynamics such as Smith, replicator, Logit and Brown–Von Neumann–Nash (BNN). Results show better performance for Smith and replicator dynamics in terms of traffic parameters both for fixed and variable signaling times, with an interesting outcome of fictitious play over BNN and Logit.
Keywords