Micromachines (Feb 2024)

Chemical Instability-Induced Wettability Patterns on Superhydrophobic Surfaces

  • Tianchen Chen,
  • Faze Chen

DOI
https://doi.org/10.3390/mi15030329
Journal volume & issue
Vol. 15, no. 3
p. 329

Abstract

Read online

Chemical instability of liquid-repellent surfaces is one of the nontrivial hurdles that hinders their real-world applications. Although much effort has been made to prepare chemically durable liquid-repellent surfaces, little attention has been paid to exploit the instability for versatile use. Herein, we propose to create hydrophilic patterns on a superhydrophobic surface by taking advantage of its chemical instability induced by acid solution treatment. A superhydrophobic Cu(OH)2 nanoneedle-covered Cu plate that shows poor stability towards HCl solution (1.0 M) is taken as an example. The results show that 2.5 min of HCl solution exposure leads to the etching of Cu(OH)2 nanoneedles and the partial removal of the self-assembled fluoroalkyl silane molecular layer, resulting in the wettability transition from superhydrophobocity to hydrophilicity, and the water contact angle decreases from ~160° to ~30°. Hydrophilic dimples with different diameters are then created on the superhydrophobic surfaces by depositing HCl droplets with different volumes. Afterwards, the hydrophilic dimple-patterned superhydrophobic surfaces are used for water droplet manipulations, including controlled transfer, merging, and nanoliter droplet deposition. The results thereby verify the feasibility of creating wettability patterns on superhydrophobic surfaces by using their chemical instability towards corrosive solutions, which broadens the fabrication methods and applications of functional liquid-repellent surfaces.

Keywords