Games (Nov 2017)

Contribution-Based Grouping under Noise

  • Heinrich H. Nax,
  • Ryan O. Murphy,
  • Stefano Duca,
  • Dirk Helbing

DOI
https://doi.org/10.3390/g8040050
Journal volume & issue
Vol. 8, no. 4
p. 50

Abstract

Read online

Many real-world mechanisms are “noisy” or “fuzzy”, that is the institutions in place to implement them operate with non-negligible degrees of imprecision and error. This observation raises the more general question of whether mechanisms that work in theory are also robust to more realistic assumptions such as noise. In this paper, in the context of voluntary contribution games, we focus on a mechanism known as “contribution-based competitive grouping”. First, we analyze how the mechanism works under noise and what happens when other assumptions such as population homogeneity are relaxed. Second, we investigate the welfare properties of the mechanism, interpreting noise as a policy instrument, and we use logit dynamic simulations to formulate mechanism design recommendations.

Keywords