Translational Psychiatry (Apr 2024)
Impact of genetic predisposition to late-onset neurodegenerative diseases on early life outcomes and brain structure
Abstract
Abstract Most patients with late-onset neurodegenerative diseases such as Alzheimer’s and Parkinson’s have a complex aetiology resulting from numerous genetic risk variants of small effects located across the genome, environmental factors, and the interaction between genes and environment. Over the last decade, genome-wide association studies (GWAS) and post-GWAS analyses have shed light on the polygenic architecture of these diseases, enabling polygenic risk scores (PRS) to estimate an individual’s relative genetic liability for presenting with the disease. PRS can screen and stratify individuals based on their genetic risk, potentially years or even decades before the onset of clinical symptoms. An emerging body of evidence from various research studies suggests that genetic susceptibility to late-onset neurodegenerative diseases might impact early life outcomes, including cognitive function, brain structure and function, and behaviour. This article summarises recent findings exploring the potential impact of genetic susceptibility to neurodegenerative diseases on early life outcomes. A better understanding of the impact of genetic susceptibility to neurodegenerative diseases early in life could be valuable in disease screening, detection, and prevention and in informing treatment strategies before significant neural damage has occurred. However, ongoing studies have limitations. Overall, our review found several studies focused on APOE haplotypes and Alzheimer’s risk, but a limited number of studies leveraging polygenic risk scores or focused on genetic susceptibility to other late-onset conditions.