Agronomy (Aug 2021)

Microbial Biomass Sulphur—An Important Yet Understudied Pool in Soil

  • Stefanie Heinze,
  • Michael Hemkemeyer,
  • Sanja Annabell Schwalb,
  • Khalid Saifullah Khan,
  • Rainer Georg Joergensen,
  • Florian Wichern

DOI
https://doi.org/10.3390/agronomy11081606
Journal volume & issue
Vol. 11, no. 8
p. 1606

Abstract

Read online

Soil microorganisms require a range of essential elements for their optimal functioning and store several elements in the microbial biomass (MB), such as carbon (C), nitrogen (N), phosphorus (P) and sulphur (S), as well as other secondary and trace elements. The C, N and P content of the microbial biomass has been quantified in many studies for many years, whereas S has been the focus only in a few studies, despite the availability of methods and the relevance of MBS for the S turnover in soils. To illustrate the relevance of MBS, this review aims at summarizing the current state of knowledge on the quantities of MBS in different soils, influencing environmental and agricultural management factors, methodological shortcomings, and prospects for soil microbial biomass research. Median MBS contents were 6.0 µg g−1 soil in arable, 7.6 µg g−1 soil in grassland, and 5.7 µg g−1 soil in forest soils. All extractants used led to similar MBS contents in soils with similar soil organic (SO) C contents. MBC and soil pH positively explained MBS, using multiple linear regression analysis. Median MB-C/S ratios increased in the order arable (55), grassland (85), and forest (135) soils. As the overall quantity of MBS data is still small, future studies are required to verify these observations. Moreover, future research needs to more strongly consider stoichiometric relationships of elements in the soil and the soil microbial ionome. The role of S and its complex relationship with the availability of other elements in soils for the soil microbial biomass and its functions remains to be elucidated.

Keywords