Heliyon (May 2023)

Acidification scenario of Cox’s Bazar coast of the Bay of Bengal, Bangladesh and its influence on fish larvae abundance

  • Saifuddin Rana,
  • Md. Nazmul Hasan,
  • Nargis Sultana,
  • Shanur Jahedul Hasan,
  • Shahida Arfine Shimul,
  • Sk. Ahmad Al Nahid

Journal volume & issue
Vol. 9, no. 5
p. e15855

Abstract

Read online

Ocean acidification is caused mainly by atmospheric carbon dioxide stored in the ocean. Ocean acidification is considered a major threat to aquatic life, and how it influences the abundance of marine fish larvae is still unclear. This research was designed to measure the current ocean acidification scenario of the Cox's Bazar coast of the Bay of Bengal, Bangladesh, and its probable influence on the abundance of fish larvae. Three research stations were selected: Bakkhali river estuary, Naf river estuary, and Rezu Khal. Monthly sampling was done, and larvae sample was collected from the surface water column (depth: 0.5 m) using a bongo net. Water parameters such as temperature, salinity, total alkalinity, and pH were determined using laboratory protocol. The seacarb package of the R programming language was used to determine ocean acidification factors. The Bakkhali river estuary showed the highest partial carbon dioxide (143.99 ± 102.27 μatm) and the lowest pH (8.27 ± 0.21). A total of 19 larvae families were identified, and the highest larval count was found in Rezu Khal (390 larvae/1000 m3), while the lowest was found in the Bakkhali river (3 larvae/1000 m3). Clupeidae, Myctophidae, and Engraulidae comprised more than 50% of the identified larvae. Blenniidae, Carangidae, Clupeidae, Engraulidae, and Gobiidae were found in all three seasons. Most of the larvae families showed the highest mean abundance under less pCO2. A negative correlation was observed between larvae and acidification factors such as pCO2, HCO3−, and dissolved inorganic carbon (DIC). The study revealed that acidification parameters of the Cox's Bazar coast were not in an acute state for the aquatic organisms' survival, but fish larvae abundance could be declined with raises in the partial carbon dioxide. The results of this study may aid in developing a management plan for conserving Bangladesh's marine and coastal fish.

Keywords