International Journal of Concrete Structures and Materials (Sep 2023)
Numerical and Experimental Analysis to Develop a SB6/H3 High Containment Level Concrete Median Barrier
Abstract
Abstract As the number of heavy vehicles on the road continues to increase, collisions involving heavy vehicles and concrete median barriers (CMB) occur more frequently than in the past. Consequently, there is a growing need for research into more stringent design standards and improvements to the current CMB and their performance under harsh conditions. High-performance CMB is required to in order to withstand such conditions. This paper presents the results of numerical simulations and full-scale field tests to develop a high-performance CMB. To facilitate the development of the high-performance CMB, the concept of a deformable CMB was applied to the rigid CMB. A new apparatus called the shock absorber composed of dowel bars surrounded by empty space were introduced to make the rigid CMB deformable. In order to prevent local failure at the top of the barrier from a sudden high increase in impact energy, the deformable CMB was strengthened by adding reinforcements and widening the top based on the results of numerical simulations. The full-scale field tests were conducted on the proposed deformable CMB and took into account three appraisal areas: (1) structural adequacy, (2) occupant risk, and (3) vehicle trajectory after collision. The results of these tests showed that the deformable CMB contained and redirected the vehicle without allowing it to penetrate or override the deformable CMB. No detached elements, fragmentation, or other debris from the barrier were present. Therefore, the proposed high-performance CMB fulfilled all of the requirements of the crash test guideline.
Keywords