Minerals (Oct 2021)

Illite-Age-Analysis (IAA) for the Dating of Shallow Faults: Prerequisites and Procedures for Improvement

  • Yungoo Song,
  • Ho Sim

DOI
https://doi.org/10.3390/min11111162
Journal volume & issue
Vol. 11, no. 11
p. 1162

Abstract

Read online

Fault age determination using the illite-age-analysis (IAA) method for fault gouges has played a key role in providing absolute age information in tectonic evolution studies for the last 20 years. The accuracy and precision of the IAA method depend on (1) how to reasonably quantify the relative content of 1M/1Md illite generated from fault activity compared to detrital 2M1 illite in the size fractions of the fault gouge, and (2) how to minimize the error factors in K-Ar or Ar-Ar dating analysis. XRD-based quantitative analysis of illite polytype has made great progress in accuracy by generating a simulated XRD pattern of 1M/1Md polytype using WILDFIRE© and full-pattern-fitting it with the XRD pattern measured from size fractions of the fault gauge. Nevertheless, the results of quantitative analysis of illite polytypes may vary depending on the sample state of the size fractions for XRD analysis, especially the preferred orientation due to the layered crystal structure of illite. In addition, the radiometric dating results may be distorted depending on the error factor of the dating method itself and on the mineral composition of the size fractions, that is, the presence of K-containing minerals such as biotite and K-feldspar other than illite. In this study, we reviewed previous studies that determined fault activity ages by applying IAA to fault gouges. From this, the prerequisites and recommendations for each of the five steps (particle size separation process, XRD analysis process, polytype quantification, radiometric dating, IAA plot) for improving the IAA method are summarized and presented. The continuous application of the improved IAA is expected to greatly contribute to the study of tectonic evolution through geological time.

Keywords