Frontiers in Neurology (Apr 2021)
Increased Relative Delta Bandpower and Delta Indices Revealed by Continuous qEEG Monitoring in a Rat Model of Ischemia-Reperfusion
Abstract
The present study describes the electroencephalographic changes that occur during cerebral ischemia and reperfusion in animals submitted to transient focal cerebral ischemia by middle cerebral artery occlusion (MCAO) for 30 min. For this, male Wistar rats were divided into two groups (n = 6 animals/group): (1) sham (control) group, and (2) ischemic/reperfusion group. The quantitative electroencephalography (qEEG) was recorded during the ischemic and immediate reperfusion (acute) phases, and then once a day for 7 days after the MCAO (subacute phase). The acute phase was characterized by a marked increase in the relative delta wave band power (p < 0.001), with a smaller, but significant increase in the relative alpha wave bandpower in the ischemic stroke phase, in comparison with the control group (p = 0.0054). In the immediate reperfusion phase, however, there was an increase in the theta, alpha, and beta waves bandpower (p < 0.001), but no alteration in the delta waves (p = 0.9984), in comparison with the control group. We also observed high values in the delta/theta ratio (DTR), the delta/alpha ratio (DAR), and the (delta+theta)/(alpha+beta) ratio (DTABR) indices during the ischemia (p < 0.05), with a major reduction in the reperfusion phase. In the subacute phase, the activity of all the waves was lower than that of the control group (p < 0.05), although the DTR, DAR, and DTABR indices remained relatively high. In conclusion, early and accurate identification of decreased delta wave bandpower, DTR, DAR, and DTABR indices, and an increase in the activity of other waves in the immediate reperfusion phase may represent an important advance for the recognition of the effectiveness of reperfusion therapy.
Keywords