Effects of Phosphorus on Nitrification Process in a Fertile Soil Amended with Urea
Jianfeng Ning,
Yuji Arai,
Jian Shen,
Ronghui Wang,
Shaoying Ai
Affiliations
Jianfeng Ning
Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
Yuji Arai
Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Jian Shen
Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
Ronghui Wang
Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
Shaoying Ai
Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
While the effects of carbon on soil nitrogen (N) cycle have been extensively studied, it is not clearly understood how co-existing macronutrients, such as phosphorus (P), affect the N cycle in agroecosystems. In this study, P amendment effects on nitrification in a fertile agricultural soil were investigated under a typical N-P amendment rate. In a laboratory incubation study, soils were amended with urea, monopotassium phosphate and a mixture of urea and monopotassium phosphate at the same rate. In soils that received no amendments (control), P only, urea only, and urea plus P amendment, nitrification occurred within the first five days, with an average net nitrification rate of 5.30, 5.77, 16.66 and 9.00 mg N kg−1d−1, respectively. Interestingly, nitrification in urea-treated soils was retarded by P addition where a N:P ratio seemed to be a key factor impeding nitrification. This was also supported by the response of ammonia-oxidizing bacteria (AOB), which was more sensitive to P addition than ammonia-oxidizing archaea (AOA). The outcome of this study showed that application of P fertilizer suppressed the nitrification process in urea amended soil, suggesting that a synergistic aspect of N and P nutrient management should be further explored to retard N losses from agricultural systems.