Georesursy (Dec 2020)

Numerical modeling of local effects on the petroleum reservoir using fixed streamtubes for typical waterflooding schemes

  • Konstantin A. Potashev,
  • Alexander B. Mazo

DOI
https://doi.org/10.18599/grs.2020.4.70-78
Journal volume & issue
Vol. 22, no. 4
pp. 70 – 78

Abstract

Read online

The difficulty of numerical modeling of areal methods of flows redistribution in the oil reservoir is the need for detailed resolution of local hydrodynamic effects and the fine geological structure of the reservoir, which are centimeter-wide, at inter-well distances of the order of several hundred meters. The dimension of computational grids of traditional 3D models of such resolution, even for impact areas containing a small number of injection and production wells, turns out to be excessively large for design calculations. To overcome these limitations, it is proposed to perform a detailed simulation of the flow in two-dimensional cross sections of the reservoir along fixed streamtubes of variable width between each pair of interacting injector and producer wells. Reducing the dimension of the problem allows the use of high-resolution grids to simulate short-term local effects. In this paper, we present an algorithm for constructing a single fixed streamtube between injector and producer, which provides a minimum error in calculating of flow rate and water cut using a two-phase flow problem of reduced dimension along the streamtube. The algorithm is demonstrated by the example of the two-dimensional two-phase flow problem neglecting capillary and gravitational forces in a homogeneous reservoir of constant thickness for three waterflooding elements corresponding to seven vertical well flooding patterns – standard and inverted four-spot, five-spot and seven-spot, as well as staggered line drive. For these waterflooding elements, efficient streamtubes have been constructed, the relative width of which is approximated by piecewise linear functions. On the example of a staggered line drive or five-spot well patterns, the width of the effective streamtube was parameterized for an arbitrary ratio of the sides of the waterflood element. Presented streamtubes can be used as ready templates for subsequent modeling of geological and technical treatments in the relevant elements of the water flooding of the oil reservoir.

Keywords