IEEE Access (Jan 2020)
A Low Computational Cost, Prioritized, Multi-Objective Optimization Procedure for Predictive Control Towards Cyber Physical Systems
Abstract
Cyber physical systems consist of heterogeneous elements with multiple dynamic features. Consequently, multiple objectives in the optimality of the overall system may be relevant at various times or during certain context conditions. Low cost, efficient implementations of such multi-objective optimization procedures are necessary when dealing with complex systems with interactions. This work proposes a sequential implementation of a multi-objective optimization procedure suitable for industrial settings and cyber physical systems with strong interaction dynamics. The methodology is used in the context of an Extended Prediction self-adaptive Control (EPSAC) strategy with prioritized objectives. The analysis indicates that the proposed algorithm is significantly lighter in terms of computational time. The combination with an input-output formulation for predictive control makes these algorithms suitable for implementation with standardized process control units. Three simulation examples from different application fields indicate the relevance and feasibility of the proposed algorithm.
Keywords