Nanomaterials (May 2019)

Magnetic Attributes of NiFe<sub>2</sub>O<sub>4</sub> Nanoparticles: Influence of Dysprosium Ions (Dy<sup>3+</sup>) Substitution

  • Munirah Abdullah Almessiere,
  • Y. Slimani,
  • H. Güngüneş,
  • S. Ali,
  • A. Manikandan,
  • I. Ercan,
  • A. Baykal,
  • A.V. Trukhanov

DOI
https://doi.org/10.3390/nano9060820
Journal volume & issue
Vol. 9, no. 6
p. 820

Abstract

Read online

This paper reports the influence of dysprosium ion (Dy3+) substitution on the structural and magnetic properties of NiDyxFe2−xO4 (0.0 ≤ x ≤ 0.1) nanoparticles (NPs) prepared using a hydrothermal method. The structure and morphology of the as-synthesized NPs were characterized via X-ray diffraction (XRD), scanning and transmission electron microscope (SEM, and TEM) analyses. 57Fe Mössbauer spectra were recorded to determine the Dy3+ content dependent variation in the line width, isomer shift, quadrupole splitting, and hyperfine magnetic fields. Furthermore, the magnetic properties of the prepared NPs were also investigated by zero-field cooled (ZFC) and field cooled (FC) magnetizations and AC susceptibility measurements. The MZFC (T) results showed a blocking temperature (TB). Below TB, the products behave as ferromagnetic (FM) and act superparamagnetic (SPM) above TB. The MFC (T) curves indicated the existence of super-spin glass (SSG) behavior below Ts (spin-glass freezing temperature). The AC susceptibility measurements confirmed the existence of the two transition temperatures (i.e., TB and Ts). Numerous models, e.g., Neel−Arrhenius (N−A), Vogel−Fulcher (V−F), and critical slowing down (CSD), were used to investigate the dynamics of the systems. It was found that the Dy substitution enhanced the magnetic interactions.

Keywords