International Journal of Mathematics and Mathematical Sciences (Jan 1982)

Univalence of normalized solutions of W″(z)+p(z)W(z)=0

  • R. K. Brown

DOI
https://doi.org/10.1155/s0161171282000441
Journal volume & issue
Vol. 5, no. 3
pp. 459 – 483

Abstract

Read online

Denote solutions of W″(z)+p(z)W(z)=0 by Wα(z)=zα[1+∑n=1∞anzn] and Wβ(z)=zβ[1+∑n=1∞bnzn], where 0<ℛ(β)≤1/2≤ℛ(α) and z2p(z) is holomorphic in |z|<1. We determine sufficient conditions on p(z) so that [Wα(z)]1/α and [Wβ(z)]1/β are univalent in |z|<1.

Keywords